Differences in drug transport across bronchial and gastrointestinal drug absorption models

B. FORBES AND A. B. LANSLEY

Department of Pharmacy, King's College London, Manresa Road, London SW3 6LX

The transport of formoterol was studied in a recently developed drug absorption model of the conducting airways (16HBE14o- cells) and compared with transport in an established gastrointestinal absorption model (Caco-2 cells).

16HBE140- cells were cultured at an air-liquid interface on collagen-coated permeable supports. The medium (DMEM: Hams F12 1:1 2 % v/v Ultroser G and 2 mM glutamine in the basolateral chamber) was replaced daily and the cells were used experimentally at day 7. Caco-2 cells were cultured according to standard methods, and the medium was replaced in both apical and basolateral chambers on alternate days. The cells were used experimentally at day 21.

A solution of formoterol containing [14C]mannitol 2.7 µM was added to the donor chamber. Samples were removed from the receptor chamber between t=0 and t=240 min and replaced with the equivalent volume of transport medium. Formoterol concentrations were analysed by HPLC (Hewlett-Packard 1050 system, Kromasil 100 5C18 25 cm x 0.32 cm i.d. x column, mobile phase acetonitrilephosphate buffer pH 3 (1:4), flow 0.75 mL.min⁻, and UV detection 214 nm). [14C]mannitol and [3H]-formoterol concentrations were determined by liquid scintillation counting. Apparent permeability coefficients (Papp) were calculated using Papp (dQ/dt).(1/(Co.A)) where dQ/dt is the transport rate, Co is the initial concentration of the solution and A is the surface area of the cells.

Several differences in the absorption characteristics of formoterol across the two

models were observed. Firstly, Caco-2 cells were less permeable to the paracellular marker, mannitol, than 16HBE140- cells (Papp = 0.31 \pm 0.02 x 10⁻⁶ cm.s⁻¹ and 1.13 \pm 0.25 x 10⁻⁶ cm.s⁻¹, respectively). Secondly, the transport rate of formoterol in the apical to basolateral (A-B) direction was lower in Caco-2 cells than 16HBE140- cells, although a similar dependence of Papp on apical pH was observed in both models (Table).

	<u>Papp (x 10^{-6} cm.s⁻¹)</u>	
Apical pH	Caco-2 model [3H]-formoterol 4 µM	16HBE140- model formoterol 0.1 mM
pH 6.0	0.36 ± 0.01	1.26 ± 0.28
рН 7.0	0.81 ± 0.02	2.28 ± 0.16
pH 7.4	1.13 ± 0.31	2.33 ± 0.32
pH 8.0	2.02 ± 0.05	3.98 ± 0.42
рН 9.0	4.00 ± 0.15	4.72 ± 0.34

Table. Apparent permeability coefficients for apical to basolateral formoterol transport across Caco-2 and 16HBE14o- drug absorption models with different apical chamber pH. Data represent mean \pm s.e.m, n=3.

Thirdly, formoterol transport at pH 7.4 was approximately six-fold higher in the basolateral to apical (B-A) direction than in the A-B direction across Caco-2 cells (Papp = $7.16 \pm$ $0.76 \times 10^{-6} \text{ cm.s}^{-1}$ and $1.13 \pm 0.04 \times 10^{-6}$ cm.s⁻¹, respectively), but was equivalent in the A-B and B-A direction in 16HBE140- cells (Papp = $2.33 \pm 0.32 \times 10^{-6} \text{ cm.s}^{-1}$ and $1.92 \pm$ $0.15 \times 10^{-6} \text{ cm.s}^{-1}$, respectively).

Assuming these differences in drug transport across bronchial and gastrointestinal absorption models to be representative of differences in drug transport *in vivo*, the value of using organ-specific drug absorption models is clear.